Hydraulic “R” Anchor
Designed to resist upward movement

Applications

- Deep, deviated wells that are not conducive to using a mechanical anchor
- Information needed for the hydraulic anchor selection include: approx. fluid level, casing size, casing weight, tubing size, pump bore size, pump depth, anchor depth, well temperature
- Casing size, weight and tubing size are the measurements needed for correct sizing of the Hydraulic “R” Anchor
- The pump depth and anchor depth are needed to run the Load/Thrust calculation to determine if the selected single anchor has the necessary holding power to prevent tubing movement

Features & Benefits

- Anchors are used in downhole applications to secure the tubing to the casing
- Anchoring the tubing in tension reduces tubing, sucker rod and casing wear as well as increasing bottom hole plunger travel, resulting in increased production
- Minimizes the frequency and number of tubing thread leaks

Description

The Evolution Hydraulic “R” Anchor is a completely automatic tool utilizing the weight of the fluid column in the tubing string to power the piston in the anchor.

The load reversal from the pump is the force that moves the hydraulic tubing anchor into tension. When the differential pressure in the tubing string is greater than the pressure in the casing annulus, the anchor piston will be hydraulically activated and press the Live Slip against the casing.

Only 70 PSI of pressure is needed to activate the piston. The anchor’s holding power is designed to resist upward movement against the normal forces encountered in the pumping operation, but will yield to forces beyond normal that would overstress the tubing string.

Fixed slips are designed to span recesses and built with a 43 degree top tooth angle and 15 degree bottom tooth angle which allows the anchor to move down the hole into proper tension position, but restricts upwards movement.

Simple to install, simple to extract, the ease of operation is a strong advantage of the hydraulic tubing anchor. As mentioned, unlike a mechanical anchor, there is no need for surface manipulation to set a hydraulic anchor. The hydraulic anchor will be activated when the insert or tubing pump is set and the pressure in the tubing string is greater than the pressure in the casing annulus.

To retrieve the anchor, simply unseat the pump, the pressure will be equalized and the anchor will no longer be in tension. If the pump is stuck, a drain can be run to empty the tubing string of fluid and allow for easy extraction of the anchor.
Canada

#3, 1820 - 30th Ave, NE
Calgary, Alberta T2E 7M5
Main: 403-243-1442
Fax: 403-258-2614

United States of America

3400 Kermit Hwy
Odessa, Texas 79764
Main: 432-337-7900
Cell: 432-248-9411

1-800-265-TOOL (8665)
sales@eotools.com

www.eotools.com evolve with us